
VideoXpert OpsCenter
Plug-In API Reference Guide

Document number: C1685M-A
Publication date: 01/20



VideoXpert OpsCenter Plug-In API Reference Guide

C1685M-A | 01/20 2

Table of Contents
Overview 3

Developing Plugins 5
Implementing a Plugin as a Class Library 5
Implementing a Plugin as an Executable 5

Key Requirements for Plugins 6
Authentication Steps 6

Discovering Plugins 6

Installing a Plugin 6

Temporary Files and Persistent Configuration Data 6
Temporary Files 6
Persistent Configuration Data 7

Overlay Plugins 7

SignOn for Plugins 8

Sequence Diagrams 9

Class and Interface Definitions 12



VideoXpert OpsCenter Plug-In API Reference Guide

C1685M-A | 01/20 3

Overview
VxOpsCenter supports third-party plugins. This document describes how to create a basic plugin that will
appear seamlessly inside a cell within a VxOpsCenter workspace.

This image shows VxOpsCenter with the prime window on the left. The prime window contains the sources
tab listing the available cameras as well as the plugins tab that shows the list of plugins. To the right of the
prime window is a 4-up workspace. This workspace contains four cells. Each cell is capable of holding a
content plugin, a video stream, or an overlay plugin and a video stream.

Dragging a plugin out of the content plugins list and dropping it in a cell will cause VxOpsCenter to load that
plugin into the cell. Dragging a camera out of the sources list and dropping it in a cell will cause the video
from that camera to stream into that cell.



VideoXpert OpsCenter Plug-In API Reference Guide

C1685M-A | 01/20 4

Dragging an overlay plugin into a cell with video causes VxOpsCenter to load the plugin into that cell.

The image below shows VxOpsCenter prime window and a 4-up workspace. The upper left cell is occupied
by a content style plugin. The lower left cell is occupied by both a video stream and an overlay style plugin.
The right side upper and lower cells are unoccupied.



VideoXpert OpsCenter Plug-In API Reference Guide

C1685M-A | 01/20 5

Developing Plugins
You can implement a plugin as an executable (exe) or a class library (dll). When starting a new project, an
executable is recommended because it makes debuggingmuch easier.

Implementing a Plugin as a Class Library
1. Create a class library project.
2. Reference theWPF assemblies PresentationCore, PresentationFramework, System.Xaml and

WindowBase.
3. Add a reference to the PluginHostInterfaces assembly. Verify that “copy local” is set to false.
4. Create aWPF user control, such as MainUserControl.
5. Create a class named Plugin that derives from Pelco.Phoenix.PluginHostInterfaces.PluginBase.
6. Place the .dll file into the designated directory of the plugin.
7. Compile the plugin and run the host.

Implementing a Plugin as an Executable
1. Create aWPF application.
2. Create aWPF user control, for example, MainUserControl
3. AddMainUserControl to themain window of the application.
4. Add a reference to the PluginHostInterfaces assembly. Verify that “copy local” is set to false.
5. Create a class named Plugin that derives from Pelco.Phoenix.PluginHostInterfaces.PluginBase
6. Place your .exe in the designated directory of the plugin.

A plugin implemented like this can run as a standalone application or within the host. This simplifies
debugging plugin code not related to host integration. The class diagram for such a “dual-head” plugin is
shown below.

Figure 1: Class diagram for a "dual-head" plugin



VideoXpert OpsCenter Plug-In API Reference Guide

C1685M-A | 01/20 6

Key Requirements for Plugins
Plugin writers are required to obtain a plugin developer key, issued by Pelco; without it the plugin will not
show up in the VxOpsCenter application. Request the key via email to integrations@pelco.com.

Plugin installers must install their software into a new sub-directory below the “Plugins” directory of
VxOpsCenter “CommonDataDir” specified in the registry. See the section titledDiscovering Plugins.

Caution: Plugins without a valid key will not be loaded by VxOpsCenter.

Authentication Steps
Each plugin developer will be issued a secret key that has been verifiably created by Pelco. That key will
be provided by the plugin to VxOpsCenter at plugin load time. VxOpsCenter will verify that it is a key that
has been created by Pelco before allowing the plugin to proceed.

It is understood that this method is not cryptographically secure and that if a malicious plugin were to
acquire a valid plugin key no additional measures are being taken to prevent it from starting up in the
system. It is generally believed that having plugin level permission to VxOpsCenter is not a security risk.
The use of keys is to help Pelco to work more closely with plugin providers and to discourage unauthorized
plugins.

Discovering Plugins
Plugins are discovered using .NET reflection.

Installing a Plugin
Plugin installers must install their software into a new sub-directory below the “Plugins” directory of
VxOpsCenter “CommonDataDir” specified in the registry.

This “CommonDataDir” key is under HKLM\Software\Pelco\OpsCenter.

l Key=CommonDataDir
l Value=The application data folder
l Type=String

This registry entry is under theWOW6432Node: HKLM\Software\WOW6432\Pelco\OpsCenter

The plugins are under CommonDataDir\Plugins. Each company should create their own sub-folder and
folder for each plugin. For example: a new plugin might be placed into
“C:\ProgramData\Pelco\OpsCenter\Plugins\ABCompany\LPR\ABCPlugin.exe”.

Temporary Files and Persistent Configuration Data
Temporary Files

l A plugin MAY store temporary data in%APPDATA%\CompanyName\Plug-inName.
l A plugin MUST NOT rely on this temporary data being available when it starts up, because it might
be started up on a different VxOpsCenter or the temporary data folders might have been deleted.

Caution:Persistent Configuration DataMUST NOT be stored in
%APPDATA%\CompanyName\Plug-inName.

mailto:integrations@pelco.com


VideoXpert OpsCenter Plug-In API Reference Guide

C1685M-A | 01/20 7

Persistent Configuration Data
VxOpsCenter supports saving plugin state as part of saving a workspace. For example: if a 4-up
workspace contains a plugin in one of its cells, VxOpsCenter, when appropriate, will call the
IOCCPlugin1.GetPluginState() to retrieve the current state of the plugin, and store it as part of the state of
the workspace. If the workspace is opened again at some time in the future or on some other
VxOpsCenter, the VxOpsCenter will call IOCCPlugin1.SetPluginState() and pass it the state data that it
retrieved from the plugin earlier. The plugin is then expected, if possible, to apply the state that it was
passed.

Overlay Plugins
Overlay plugins may be configured by returning true for IsOverlay, otherwise it will be a content plugin. An
Overlay plugin is one that occupies the same cell as a video stream. These types of plugins are intended to
annotate the video stream in someway.

An overlay plugin may change its configuration at run time by calling IOCCHostOverlay.SetOverlayAnchor
();

Figure 2: Overlay plugins



VideoXpert OpsCenter Plug-In API Reference Guide

C1685M-A | 01/20 8

Sign On for Plugins
A plugin that needs to authenticate its users so that it can know what kinds of data that a given user has
permission to will follow the steps in the diagram below. These steps minimize the number of times a user
has to log in to plugins.

Note:Steps 1 and 2 are VxOpsCenter steps. They are included in the diagram to give the plugin
writer some context about when it will receive Login calls.

Figure 3: Sign on for plugins

This approach requires that VxOpsCenter store the plugin credentials “with” the operator’s account.

If this is the first time logging in, there will be no plugin credentials. The plugin will request them from the
user and then call the host to store them (IOCCHost1.StoreCredentials) with the currently logged in
operator’s account.

If this is a subsequent login then the plugin credentials will be provided. It’s up to the plugin to validate the
credentials that are passed to it. In some cases the plugin will validate with its own server. If the
credentials are valid the plugin is good to go. If the credentials are not valid, then the plugin should report
that the user is not authorized for this plugin, and give them an opportunity to log in.



VideoXpert OpsCenter Plug-In API Reference Guide

C1685M-A | 01/20 9

Sequence Diagrams
The following sequence diagrams show what methods are called and in what order.

Figure 4: Startup sequence



VideoXpert OpsCenter Plug-In API Reference Guide

C1685M-A | 01/20 10

Figure 5: Shutdown sequence



VideoXpert OpsCenter Plug-In API Reference Guide

C1685M-A | 01/20 11

Figure 6: Sequence to Login/Logout of VxOpsCenter Client

Figure 7: Sequence to register for camera onscreen notifications



VideoXpert OpsCenter Plug-In API Reference Guide

C1685M-A | 01/20 12

Figure 8: Sequence to register for thumbnail preferences for notifications

Figure 9: Sequence to register for video cell notifications

Class and Interface Definitions
To keep your plugin performing optimally:

l Be prepared to have the host call into your plugin as soon as your plugin constructor returns. It will
send you information that you will need to set up or restore the state of your plugin before it actually
becomes visible to the user. To discover what plugin APIs can happen before the host calls
CreateControl() on your plugin, see the section titledSequence Diagrams.

l Spend as little time as possible responding to IPlugin or IOCCPlugin calls. Although you are in a
separate process, the UI is still serialized and long response times may make VxOpsCenter appear
to be frozen.
For example: DONOT do synchronous server-side communication inside an IPlugin or IOCCPlugin
call. If the server is slow to respond, your plugin and possibly the entire VxOpsCenter will appear to
be frozen. Do theminimum and return.

l A race condition with plugins happens when a plugin spends a toomuch time in CreateControl().
When the plugin appears to be unresponsive (because its taking a long time to load), the user might
give up on the plugin and close it. This can cause a hard shutdown of the plugin when it is trying to
start up.



VideoXpert OpsCenter Plug-In API Reference Guide

C1685M-A | 01/20 13

The easiest way to avoid this is to respond quickly to CreateControl() without completely loading
everything. Either put up a “Loading…” progress UI or build the UI asynchronously as you get the
information you need. In either case the user will see that the plugin is not dead, it is just not done
loading yet.

The following interfaces can be instantiated by the plugin to call operations on VxOpsCenter.

l IOCCHost1

– void InitiateStreams(List<string> cameraList);
– void RegisterForThumbnailPreference(bool send);
– void RegisterForOnScreenNotifications(bool send);
– void StoreCredentials(string credentials);

l IOCCHostGeneral

– void LaunchContent(LaunchContent content);
– void LaunchContentList(List<LaunchContent> contents);
– void RegisterForThumbnailPreference(bool send);
– void RegisterForOnScreenNotifications(bool send);
– void StoreCredentials(string credentials);

l IOCCHostJoystick

– void RegisterForJoystickNotifications(bool send);
– void SetJoystickLimits(int xMin, int xMax, int yMin, int yMax, int zMin, int zMax, int uMin, int

uMax);
– void EscJoystick();

l IOCCHostLookupDatasourceIDs

– List<string> LookupDatasourceIDs(string cameraNumber);

l IOCCHostOverlay

– void RegisterForVideoCellNotifications(bool send);
– void SetOverlayAnchor(AnchorTypes anchoredTo, double percentage, int min, int max);

l IOCCHostOverlayDrawingService

– void Draw(Overlay overlay);
– void Update(Overlay overlay);
– void RemoveOverlay(string overlayId);
– void ClearOverlays();

l IOCCHostOverlayEx

– void RegisterForVideoCellNotifications(bool send, TimeSpan? onVideoTimerInterval = null);

l IOCCHostPlaybackController

– void Play();
– void Pause();



VideoXpert OpsCenter Plug-In API Reference Guide

C1685M-A | 01/20 14

– void Seek(DateTime utcTime);
– void AdjustSpeed(PlaybackSpeed speed);
– void JumpToLive();
– void SetOnScreenDataSource(string datasourceId, DateTime? utcStartTime);
– void RegisterForVideoPlaybackNotifications(bool shouldSend, bool

provideMetadataAssociations = false);

l IOCCHostRegisterForDragDrop

– void RegisterForDragDrop(bool send);

l IOCCHostSerenity

– string GetAuthToken();
– string GetBaseURI();
– List<SystemInfo> GetConnectedSystems();

l IOCCHostSetDatasource - Interface deprecated, please use IOCCHostPlaybackController instead

– void SetDatasource(string datasourceId, DateTime? utcTime);

l IOCCHostSetVideoPosition - Interface deprecated, please use IOCCHostPlaybackController
instead.

– void SetVideoPosition(DateTime utcTime);

l IOCCHostVideoOverlay

– void RegisterForVideoViewNotifications(bool send);

The following interfaces can be implemented by the plugin to get invoked by VxOpsCenter and to provided
information.

l PluginBase - Required to be implemented by the plugin (implements IPlugin)

– public abstract FrameworkElement CreateControl();
– public virtual object GetService(Type serviceType);
– public virtual void Dispose();
– public abstract string GetPluginKey();
– public abstract string Name { get; }
– public abstract string Description { get; }
– public abstract string Version { get; }
– public abstract bool IsOverlay { get; }
– public abstract string PluginID { get; }
– public abstract void Shutdown();

l IPlugin - Implemented by PluginBase

– FrameworkElement CreateControl();
– string GetPluginKey();
– string Name { get; }



VideoXpert OpsCenter Plug-In API Reference Guide

C1685M-A | 01/20 15

– string Description { get; }
– string Version { get; }
– bool IsOverlay { get; }
– string PluginID { get; }
– void Shutdown();

l IOCCPlugin1

– void OnThumbnailPreferenceNotification(bool show);
– void OnCameraOnScreeen(string cameraId, bool onScreen);
– string GetPluginState();
– void SetPluginState(string pluginState);
– bool RequiresCredentials { get; }
– void Login(string credentials);
– void Logout();

l IOCCPluginGeneral

– void OnThumbnailPreferenceNotification(bool show);
– void OnCameraOnScreen(string cameraId, bool onScreen);
– string GetPluginState();
– void SetPluginState(string pluginState);
– bool RequiresCredentials { get; }
– void Login(string credentials);
– void Logout();

l IOCCPluginJoystick

– void OnJoystickNotification(int X, int Y, int Z, int U);

l IOCCPluginOverlay

– void OnVideoPlayPause(string dataSourceId, string number, bool live, bool playing, DateTime
utcTime);

– void OnVideoTimer(DateTime utcTime);
– void OnVideoRemoved();

l IOCCPluginPlaybackNotifications

– void OnVideoRemoved();
– void OnNewVideoSourcePlaying(PlayingState state);
– void OnVideoPaused();
– void OnPlayUpdate(bool isLive, DateTime? anchorTime, DateTime? initiationTime, double

speed);

l IOCCPluginVideoOverlay

– FrameworkElement CreateVideoOverlay();
– void OnVideoViewStreamAspectRatio(double aspectRatio);



VideoXpert OpsCenter Plug-In API Reference Guide

C1685M-A | 01/20 16

– void OnVideoViewDigitalPtzInfo(Rect normalizedDPTZWindow);
– void OnVideoViewWindow(Rect normalizedVideoWindow, double rotation);



VideoXpert OpsCenter Plug-In API Reference Guide

Pelco, Inc.
625 W. Alluvial, Fresno, California 93711 United States
(800) 289-9100 Tel
(800) 289-9150 Fax
+1 (559) 292-1981 International Tel
+1 (559) 348-1120 International Fax
www.pelco.com

Pelco, the Pelco logo, and other trademarksassociated with Pelco products referred to in this publication are trademarksof Pelco, Inc.
or its affiliates. ONVIF and theONVIF logo are trademarksof ONVIF Inc. All other product namesand servicesare the property of their
respective companies. Product specificationsand availability are subject to change without notice.

© Copyright 2020, Pelco, Inc. All rights reserved.

http://www.pelco.com/

	Overview
	Developing Plugins
	Implementing a Plugin as a Class Library
	Implementing a Plugin as an Executable

	Key Requirements for Plugins
	Authentication Steps

	Discovering Plugins
	Installing a Plugin
	Temporary Files and Persistent Configuration Data
	Temporary Files
	Persistent Configuration Data

	Overlay Plugins
	Sign On for Plugins
	Sequence Diagrams
	Class and Interface Definitions

